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Quantum Computing

e replace bit with qubit: two state quantum system, states |0),

1)

e quantum data states obey axioms of quantum mechanices
— Single qubit state space #; = C|0) & C|1) = C2

- [B) =10) +1[1)

— n-qubit state space #n = @7 H; = Of a1 n bit stringC|6> ~ 2"

— two-qubit example: |@) = |00) 4 |11)

« Both qubits in same state; equal chance of 0, 1



Quantum Computing Cont.

e density matrix p: Hermitian matrix describing stochastic dispersion of
pure states |)

— Choice of diagonalizations specifies mixture
— For X = |) pure, unmixed density matrix is p = [P) (Y| = xxt = xx*

— All states pure for rest of talk

e quantum computations: apply 2" x 2" unitary matrix u to n-qubit data
strings, i.e. X— uX

Thm: (93, Bernstein-Vazirani) The Deutsch-Jozsa algorithm proves quan-
tum computers would violate the Church-Turing hypothesis.



e Relabelling |00),...

e one-qubit unitaries: H = (1/\/5)( i

Example: F the Two-Qubit
Fourier Transform in z/4Z
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Tensor (Kronecker) Products of Data,
Computations

o |@=[0)+ill), [W) =10)—[1) e H
— interpret |10) = |1) ® |0) etc.

— composite state in #: |@) ® |@) = |00) —|01) +i]|10) —i|11)

e Most two-qubit states are not tensors of one-qubit states.

o IfA= ( d __B ) IS one-qubit, B one-qubit, then the two-qubit tensor

B a
oB —[(B

A®Bis (A®B) = ( 3B aB ) . Most 4 x 4 unitary u are not local.
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Quantum Circuits
e Quantum computation complexity ~ size of quantum circuit

e Typical choices of gates
— Any two-qubit

— one-qubit, and CNOTSs (|biby) — |by (b1 ®by))), (|brby) — |(by @ by)by))



Quantum Circuits Cont.

e For X =NOT = ( 2 é ) sample quantum circuit:

0100
1 00 0 |._.

U=1950101|' implemented by  — X X
0 001

N

e good quantum circuit design: find tensor factors of computation u
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Circuit Synthesis by QR Decomposition
e universality argument(1995): circuits for arbitrary u

e observation (2000): argument implements QR decomposition
— In general, m= qgr, with g unitary, r upper-triangular
— g is made of Givens rotations

— munitary demands r = g*m unitary, i.e. r diagonal

e two-qubit Givens rotation: Gyg 11 acts on |10) and |11) by 2 x 2 matrix v

1 0
Gio11 = = (Ov>

_V_
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QRreduction of 4 x 4 unitary
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Circuits for Givens Rotations

e Barenco etal.: Gig11 =2 CNOTs + 4 (variable) one-qubit gates

& T Tadmds

— a,b,cand d are computed from v

e Givens rotation Gy 10 on |00), |01) is the conjugation of G1g 11 by X®1
v 0
GOO,Ol = (X®1)(topCVv)(X®1l) = ( 0 1 )
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Summary of QR Circuit Synthesis

Breakthrough: Every unitary u possesses a quantum circuit.

Roughly, Givens rotations build circuit entry by entry.

This design philosophy often ignores underlying structure.

General philosophy recurs in circuit design:
— Choose matrix decomposition

— Produce circuits factorwise
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Cosine-Sine Decomposition

Cosine-Sine Decomposition factors a 2" x 2" unitary u:
U— vi O C S v3 0
L 0w —S C 0 v
e Vi,Vp,V3,Vy are (2"/2) x (2"/2) unitary
e c=diagonal(costp,costy,---Coston/p_1)
e s=diagonal(sintp,sinty,---sintn/,_1)

Remark: Decomposition of unitary matrix, not arbitrary matrix

More structure?
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Cosine-Sine Decomposition Cont.

V10_V10 1 O__ o
0w/ \ 0w 0 vivo )

e Side matrices of C.S.D. do not change top qubit

e Good choice (?) when measurement of single qubit is output

e (-ph/0303039 (B-,Markov): Circuit for cosine-sine matrix
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The Magic Basis of Two-Qubit State Space

e The magic basis of phase shifted Bell states is

e

ml) = (|00)+[11))/v2
m2) = (il00) —il11))/vZ
m3) = (i|01) +i|10))/v/2
Ima) = (|01)—[10))/v/2

These are maximally-entangled states. Global phases are important.

Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001)
Consider a two-qubit computation U with det(U) =1

e Compute matrix elements in the magic basis

e (All matrix elements are real) <= (U = A® B)
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The Two-Bit Entangler

e Entangler unitary E takes computational basis to the magic basis:

100) 5 [m1), |01) — [m2), [10) = [m3), [11) s |m4)

1 i 0 0
e_vY2[0 0 i 1
210 0 i -1

1 i 0 0

Corollary Consider u 4x unitary, detu=1. Then

(u=A®B) <= (EUE" is real orthogonal)
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An Example of the Isomorphism

We choose some orthogonal u, det(u) = 1.

1 0 0 1
y_V2[ 0110
2| 01 1 0

-1 0 0 1

Then EUE* is a tensor of one-qubit computations:

10 -1 0
v2{ o1 0 -1 V2 /(1 -1
*x _ V& _ V<
BUE" =—110 1 o 2(11)®1
01 0 1

Column by column, this amounts to application of the magic basis.
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Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a
matrix decomposition of the following form:

u=(b®c)ad® f)

for b®c,d® f are tensors of one-qubit computations and a = EJE* for a
diagonal matrix d = X}iOO e'®i(j)(j|, detd = 1.

Note that a applies relative phases (complex multiples) to the magic basis.

Circuit diagram: For any u a two-gqubit computation, we have:
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Applications of the Canonical Decomposition

Two-qubit Circuit Design: [(FVatan, Colin Williams), (G.Vidal, C.Dawson), (V.Shende,
|.Markov, B-)]

e Choose a universal gate library

e In two-qubits, provably optimal or near optimal circuits
— Implementb®c, d® f as tensor

— Choose method for circuit for a

Entanglement Capacities: (J. Zhang, J. Vala, S. Sastry, KB Whaley) Only a block may
entangle |Y); other factors are local.

Quantum Circuit Structure: (V.Shende, B-, I.Markov) Recognize u with particularly sim-

ple circuits; produce circuits with special case a
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Computing the
Canonical Decomp05|t|on
Step #1: Compute the unitary SVD of v unitary:

v=o01doy, ddiagonal, 01,05 real orthogonal
Due to a theorem, this decomposition exists.
Step la: Suppose v = 01doy, and label p = oldotl. Then v = p(0102) and

p=p!, p unitary. Moreover, we may compute p® = w' = 0,d%0}.

Remark: For p2 = a+ib, 1= p%(p*)2 = (a+ib)(a—ib) = (a2 — b?) +i(ba—ab). Thus
the real and imaginary parts of p? are real symmetric matrices that com-
mute, hence 07 exists.
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Computing the
Canonical Decomposition Cont.

Step 1b: Diagonalize to find d2. Write p = o7dob, with determinants of o4
and d both one.

Step 1c: Then v = (0;do})(010y) for 0, = o} p*v.

Step #2: Canonical decomposition results by translation through entan-
glers. If E*VE = 0q1doy, then

v=(E01E*)(EdE*)(E0E™) = (b®c)a(d® f)

WARNING! Entanglers do not function properly on inputs with det # 1.
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Entanglement Monotones
e Entangled |P): any non-local |), i.e. not tensor (Kronecker) product

e Entanglement monotone: functions that measure how far away a state
\W) is from local (full Kronecker product)

e Monotones usually map to [0,1], must return 0 on local states, may
return zero on nonlocal states.

— only detect certain entanglement types

— types thought to grow exponentially with n
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cConcurrence

0 -1 . .
. O),WlthS:@)?(—lY)

a 2" x 2" complex matrix. For X = |}, we have Cn(|U)) = [xX'SX.

e concurrence entanglement monotone: —iY = (

o S=®7(-iY) is antidiagonal, § =S~ = (-1)"S

e 4-qubit examples
— maximal 1 on |GHZ) = (1/+/2)(]00---0) +]11---1))
— vanishes on entangled W) = (1/4)(|0001) + |0010) + |0100) + |1000))
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Concurrence Form

Definition: The concurrence bilinear form G : #Hn x #Hy — C is given by
Cn(X, W) = XS

Remark: So Ch(X) = |Gh(X,X)].

0O 0 01 W1

| ) 0O 0 -1 0 W
2-qubits: CZ(X,W):(Xl X2 X3 X4) 0 -1 00 Wg
1 0 00 Wiy
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Generalized Entanglers

4-qubit entangler:

~ N

OO OO0 OO0 ——0 00000 O0o
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OOOOOO.|OO._ OO OO O0oOo
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N— ___~

Eo=(1/v2)
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Concurrence Canonical Decomposition

Theorem (B-, Brennen) Let v be a 2" x 2" unitary, n even. Then v = kjaks
where the factors have the following properties.

e Kkj = EgojE;, where oj orthogonal, j =1,2
o kthkj =S i.e. Gh(kKR kW) = Gh(X,W) VX, W in n-qubit data space %

e For a diagonal d, the central factor a = EqdEj applies relative phases
to the concurrence-one columns of Eg

Algorithm: Computable in same manner as two-qubit canonical decompo-
sition. Given scaling of matrix sizes, numerical issues arise in > 12 qubits.
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Application: Concurrence Capacity

Definition: The concurrence capacity of a given n-qubit quantum compu-
tation v is defined by k(v) = max{Cn(v|y)) ; Cn(|Y)) = 0,{PY|Y) = 1}.

Corollary: Let u= kjaky be the concurrence canonical decomposition of
some 2" x 2" unitary u. Then k(u) = k(a).

e Calculation: For n=2p, most a have k(a) =1 as p — .

e Conclusion: Most large unitaries are arbitrarily entangling with respect
to the (single) entanglement monotone Cy,.
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On-going Work

e Most large uin even qubits carry some |) of concurrence 0 to u|y) of
concurrence 1.

— Compute numerical examples?

— How entangled are such |y) with respect to other monotones?
e Do the factors have reasonable quantum circuits?
e Odd n: a decomposition exists, do not know algorithm to compute fit.

e Analyze particular u from well-known quantum algorithms
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Ongoing Work: Numerical Issues

e Algorithm for (n = 2p)-qubit canonical is similar to n= 2

— Diagonalize commuting real 2" x 2" matrices a, b, with same
orthogonal matrix o

— Otherwise several matrix multiplications

— 60-qubits: can't distinguish 20 eigenvalues with 16 digits

e n-odd: complicated decomposition exists, no algorithm
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